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Assessing, Accommodating, and Interpreting
the Influences of Heterogeneity
by Thomas A. Louis*

Hetergeneity, rnging fom measurement emr to vaiation among or regons, Iluenes all le ofdata
collected for riid fsm . In Its role as anemes, can rIducethep*eionof ch e the shape
of a population model, or reduce the gene y of study resuts In mam contexts, however, heter isty the
primary object ofinfbence. Indeed, some degree of nie ofa alneamontam ated tha
model is necessary inorderto identify hnportat determinantsoresponse. lMsreportoudlesthecausesand Influences
of t,delops amethodsiuedtoesd teand accountfor it,dhcui snonof lerpretation hete niFty,
and shows how it shoud influence study design. Examples from dose-responem ientification of sensitive in-
dividuals, at of small area variations and meta analysis provide apped contexts.

Introduction
Without heterogeneity, or variation, there would be no poten-

tial for gaining scientific information. Yet, unappreciated
heterogeneity can degrade or distort scientific interpreta-
tions.Therefore, though heterogeneity may play a negative role
in some situations, it is our lifeblood in others. This report
discusses issues, techniques, and examples related to assessing,
accommodating, interpreting, and controlling the effects of
heterogeneity. Though no abstract definition ofheterogeneity is
satisfactory for all settings, we shall propose operational defini-
tions that are relevant to specific scientific and practical ques-
tions. We do not go into great detail on any specific issue or ex-

ample, rather we provide an overview and key into a wide
literature.

Heterogeneity can be defined in many ways with the most in-
clusive being variation in general. More restrictive definitions
help structure our approach. Heterogeneity as variation in excess
of a baseline model provides an important framework. For ex-

ample, Knuiman et al. (1), Margolin etal. (2,3), and McCann et
al. (4) show that intra- and interlaboratory variation in the
number of revertants in the Ames test far exceeds that predicted
from the Poisson distribution, and we have a considerable
amount ofunexplained variation. Interpretations ofthe Ames test
should be based on the true variability, so identifying the excess
has direct value. Equally important is an attempt to explain ex-

cess variation. Much ofthis may be inexplicable, but some may
be accounted for by covariates such as variation in the growth
medium and incubation temperature. Explaining some ofthe ex-
cess allows improved experimental design, and, with a validated
model that relates covariates to outcomes, gives the ability adjust
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results and to put outcomes on a common basis. This adjustment
can reduce variability and bias.
The problem ofdefining and identifying sensitive individuals

provides another instructive example. As Bailar and Louis (5)
discuss for lung responsiveness to challenge, smokers as a group
may be considered sensitive relative to nonmokers, yet some
smokers (even in the same smoking rate category) are more sen-
sitive than others. This example identifies the question ofscop-
ing the assessment of heterogeneity. One needs to group study
units that can be considered homogeneous (follow a baseline
model). This decision is made using a combination of scientific
and practical considerations.
A third class ofexamples, called measurement error models,

shows the importance of identifying and accounting for
heterogeneity. Consider the effect ofdiastolic blood pressure on
risk of stroke. Blood pressure measurements are made with er-
ror (6,7), and it is well known that estimated regression slopes
are attenuated relative to the relation between true blood pressure
and risk of stroke. Ofcourse, the reported regression slope is cor-
rect for the question ofhow stroke risk relates to measured blood
pressure. But this slope does underestimate the true influence of
blood pressure on stroke. MacMahon et al. (8) show, for exam-
ple, that the reported slope should be increased by approximately
60% to estimate the underlying relation. This increase has pro-
found policy and health implications.

Identifying this attenuation of slope is important when com-
bining evidence over a variety ofstudies through a meta analysis
or overview (9). If each study uses a different measurement
system (for example, taking the average ofa different number of
blood pressure readings), reported slopes will need adjustment
before combining. Failure to do so can result in observed
heterogeneity of slopes in excess of that predicted by sampling
variability (the baseline model). In this case, the unexplained
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variation can be explained and accommodated by an error-in-
variables model.
One more class ofexamples serve to introduce another feature

of unappreciated heterogeneity. Vaupel and Yashin (10) and
Yashin (11) discuss "heterogeneity's ruses," where the shape of
the hazard for death in a population is different from that for any
individual. For example, each individual may have a constant
hazard (exponential distribution), but the population curve will
show a decreasing hazard. Relatively speaking, the frail die out
early, leaving the hardy (low hazard) to live. Again, at the popula-
tion level, the decreasing hazard is appropriate, but ifone wishes
to study aging or policy impacts, an understanding of the ruses
and an attempt using data and theory to uncover them is vital.
These ruses are just another example of Simpson's paradox.
Thepolicy issue in survivalmodels iseasily seen instudiesofthe

effects ofsmokingcessationontheriskoflungcancer. A multistage
model predicts thatthe excess riskcontinues to increaseevenafter
an individual stops smoking (though the increase is less than for
an individual who continues to smoke), whereas many data sets
show that the excess decreases. The decrease may be true, and
surely is for the population, but each individual's excess risk may
indeed increase, but heterogeneously.
The facts discussed so far, suggest several definitions of

heterogeneity, including general variability, variability in excess
of a baseline model, variance components, measurement error,
variation in latent parameters. To these definitions we can add
heterogeneity induced by variation in data analytic approaches.
In the end, heterogeneity is a vague concept and is best ap-
preciated through a series of examples.

Two-Stage Models
Basic
The two-stage model provides a convenient way to represent

variation in excess of a baseline model. In this model we have
stage II: a parameter (vector) is sampled from a distribution; and
stage I: data are generated from a sampling distribution, condi-
tional on the parameter. This two-stage sampling process can be
repeated for each experimenal unit (e.g., clinics, petri dishes,
small geographic areas), and underlies Bayes and empirical
Bayes analysis. For concreteness, consider a stage II governed by
a prior distribution (G) that is Gaussian and that stage I is Gaus-
sian with a known variance (12,13). Let k denote experimental
unit, k = 1, . . ., K, and the basic model becomes:

61, 02, ... 0K are iid N(1i, r2)

YkI Ok N(Ok, u2).
This model can be extended in a wide variety of ways, in-

cluding having repeated sampling ofY values for each 0, allow-
ing distributions different from the Gaussian, using unequal
sampling variances, and introducing a regression structure for
the Y so that the 0 values come from different, but related
distributions. Continuing with this basic model we have:

Y1, ..., YK are (iid) N (A, U2 + r2)

and the Y, values are overdispersed relative to the sampling
distribution with variance a2, but it may be explicable.

This model is the model II or random effects ANOVA, and tests
ofthe null hypothesis are asking ifr2 = 0. If T2 > 0, then we have
variation not accounted for by the baseline model and can look
for explanations through covariance adjustment. If useful
covariates are present, excess (unexplained) variation will be
reduced by the adjustment. Notice that the notion ofexcess varia-
tion depends on the stage I model (the sampling distribution). If
we find in a data set that the sample variance:

(yYk-Y)2= 10,

and we know (assume) that a2 = 6, then a natural estimate for r2
is 4. If, however, we assume 2 = 9, then -r = 1. In practice, we
need either direct information on sampling variation (through
replication within units) or reliable assumptions (e. g., use ofarc-
sine transformed binomial data) to identify T2.
For another example ofa two-stage model, consider the case

where the sampling distribution is Poisson (14,15). Then,

YkI Ok N Poi (Ok), E (YkI Ok)
= Ok,V (Yk Ok)= Ok.

Frequently, variability among the Y values is greater than that
predicted by their sample mean, and a two-stage model is sug-
gested (1-3). For example, assuming that theO values are gam-
ma with mean, g, and squared coefficient of variation ac', we
find that the Y, values are negative binomial with:

allowing for overdispersion. Even ifwe do not accept the two-
stage hierarchy, the negative binomial allows more flexible
modeling than does the Poisson.

Consequences
Going back to the Gaussian example, let us consider estima-

tion ofthe mean (JL), and estimation ofthe individual 0 values.
For the fonier, allow n replications for each 0. The optimal
estimate of t is Y, the mean ofall observations. The variance of
Y consists oftwo components: that induced by the prior and that
induced by the sampling distribution. We have:

Y KR Yk, V(Y) =Rn_ + R-

Notice that increasing eitherK or n will reduce the first tern, but
the second term is controlled by K, the number of0 values that
we sampled (primary units). In fact, ifn = co, so that we have
perfect knowledge of each 0,k we still have uncertainty in
estimating ;L.
A flxedefcts analysis, where we wish to estimate 0, the mean

of the 0 values generating these data, assumes no connection
among them. The random effects analysis strives to make an in-
ferenceabout t, whichisbroaderthantothecurrentexperimental

216



NFLUENCES OF HETEROGFNVEITY

uiits, and this broader inference comes with increased variabili-
ty. To get an idea of the increase, consider the ratio of the
variability for the random effect (RE) versus fixed effect (FE)
analysis. We have: V

RE= 1 + (n-1) p,
V
FE

where p = i2/(a2 + 72) is the intraclass correlation. Ifn = 1 or
p = 0 (r = 0), there is no variance inflation, otherwise it can be
considerable. This ratio is called the design effect. In the extreme
case with p = 1, n observations on an experimental unit are no
more informative (variance reducing) an one observation and
V,E is n times VF.
The design effect and generalizations thereof can be used to

determine how many repeat measurements on a unit (n) and how
many units (K) are needed to produce a desired accuracy. Setting
n = 1 minimizes the number of observations, but generally
repeat observations on a unit are more relevant or less expensive
than adding units, so an n > I usually produces the opimal solu-
tion under resource constraints.
The decision to use fixed or random effects depends on in-

ferential goals, and differences in goals underlie the current con-
troversy over when to use meta analysis (16). The random effects
approach produces considerably larger standard errors on an
estimated treatment effect than does the fixed effects analyses.
Peto and colleagues argue in favor of inferences limited to the
meta-analyzed studies and used fixed effects (17). Others desire
a broadened inference to the population of similar studies, and
this promotes random effects (18). The narrow inference has a
well-defined reference population but does not easily genealize.
The broad inference is possibly more relevant, but the target
population is somewhat vague.

Irrespective ofthese scoping issues, the stage II variance com-
ponent can be ofindependent interest. Consider the metaanalysis
ofthe effect ofcoaching on scholastic aptitude test (SAT) scores
conducted by Laird and DerSimonian (19). Table 1 shows that
estimated effects are greater for uncontrolled than for controll-
ed studies (likely because much of the coaching effect is really
regression to the mean), reports the stamdard error ofthe estimate
(the SE depends both on the number of studies and the sample
size for each study), and shows that the stage II variability is
greater for uncontrolled studies. We can see that unexplained
variation is greater for the uncontrolled studies (it is likely that
dty are perforned under a wide variety ofconditions) and under
the Gaussian assumption can get an idea ofthe variation in true
coaching effect. True coaching effect for uncontrolled studies can
be expected to vary according to a N(41, 252) distribution, while
for matched/randomized studies it follows something close to a
N(10, 32). This information is ofpolicy interest. For example, it
is virtually impossible for there to be a negative coaching effect

Tnbke 1. The effect ofcoachn on SAT scores (19).
Coaching effect

Matched/
Parameter Uncontrolled Controlled randomized

A 41 15 10
SE (ji) 10 5 4

t 25 14 3

Table 2. Meta anlysis of vinyl chloide fron
Beausmont and Bresow (20).a

Relative p-Values
Site risk Ho:RR = 1 Heterogeneity
Liver 5.2 0.0001 0.002
Brain 1.7 0.01 0.100
Lung 1.1 Not significant 0.060
There were nine studies.

in the randomized approach applied to populations similar to
those used in the current studies.

Tests for heterogeneity in a Gaussian framework ask if T2 = 0.
In general, these tests are less informative than reporting an
estimate, where one can determine if the excess variation is a
threat to interpretation or generalization. Consider, for example,
the meta analysis conducted by Beaumont and Breslow (20) on
the cancer risk from vinyl chloride. Table 2 shows their sum-
mary, indicating statistically significant relative risks for liver
and brain, but not for lung tumors. For liver, the test for
heterogeneity conclusively shows that the studies are not
estimating a common relative risk (there is heterogeneity). An
estimated variance component would allow one to see if varia-
tion in relative risks is sufficient to produce values below 1 (a
qualitative interaction) or simply variation all to the right of 1 (a
quantitative interaction). The former causes problems in inter-
pretation, the latter does not. Both set the stage for finding ex-
planations for the excess variation.

Example
An early two-stage analysis of water contamination was

published by Von Mises (21). In each of 3420 sampling sites, 5
samples were taken and the number of contaminated samples
recorded. Table 3 gives the data and expected frequencies
(rounded) under the binomial distribution, computed with the
estimated contmination probability of0.025. For this event pro-
bability, the binomial assumption predicts far too few occurences
of2 to 5, and a two-stage variance components model can cap-
ture the excess variation among geopraphic areas. The sample
variance of the observed contaminations is 0.1885, which is
greater than the 0.1219 predicted from the binomial [0.1219=
5(0.025)(0.975)J, suggesting overdispersion.
The beta distribution is a common model for stage II, and we

parameterize it by the mean, ju, and intraclass correlation (M +
1)'. Specifically, with 0 the binomial parameter:

E(O) =-A, V(O) = A4l -.u)/(M + 1).
From the Von Mises data, we obtain i =0.025, M = 6.2. The
62 shows high apriori variation, whereas anM -+ oo would in-
dicate no prior variation.
We can go further with this example and free ourselves from

assuming a specific parametric shape for the prior by using a
nonparametric estimate. Laird (22) introduced the algorithm,
and we obtain a discrete prior with masses (0.606, 0.261, 0.092,
0.022, 0.018) at mass points (0.012, 0.021, 0.029, 0.052, 0.408).
This nonparametric approach allows for flexible modeling, and
when its p es are better developed, it should become a stan-
dard approach to variance component problems.
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Table 3. Distribution conIted sampes in 3420 sampig sites (21).
Number

contaminated Frequency Expected
0 3086 3017
1 279 383
2 32 19
3 15 0.5
4 5 0
5 3 0

Transforms
Sometimes heterogeneity can be reduced or eliminated by a

data transform. Consider data from a multicenter clinical trial
analyzed by the model:

Yjk = ak + bk Tj + ejk,

where T, = 0 forj = 1 (treatment 1), T, = 1 forj = 2 (treatment
2), k denotes the clinic, the a values and b values are random ef-
fects, and theY values are treatment means. Ifthe data are actual-
ly log-normal, the proper model is:

* * *

log (Yjk) = ak + bk Tj + ejk

with b* =b, we have the situation where V(bj) < 0 butV (b) =

0. This treatment-by-clinic random interaction effect in the un-
transformed scale is induced by clinics having different baseline
responses (the a, vary) and the model being misspecified. Ran-
dom effects models in the untransformed scale can pick up the
interaction induced by misspecification and serve to make the
standard analysis more robust. Notice that interaction induced
by these transformation models is never qualitative (all the bk
are of the same sign) so combining evidence is scientifically
valid. The random-effects model delivers an estimated variance
for the treatment effect that accounts for the heterogeneity.

Estimating Individual Components
Now, let us consider estimating the underlying mean for in-
dividual units (the o for the Gaussian example). Ifwe knew jA
and r2, the distribution of o given yk (the posterior distribution)
is Gaussian with:

E(OkIYk) = + (1 -B) (Yk- 1)

V(Ok Yk) = (1-B) a2,
where B = oa/ (a2 + 72). Notice that the observed value (Y) is
shrunken towards the prior mean (u) by an amount that depends
on the relative sizes ofthe prior and sampling variance and that
the variance is less than the sampling variance a2.If a2 is small
(e.g., if Y, is an average of several replicates), then B is small
and very little shrinkage takes place. Similarly, if r2 is relative-
ly large (there is very little information a priori) we have little
shrinkage. Indeed, ifB = 0, the conditional expectation of ok is

Ykl the usual result. If a2 is relatively large, considerable
shrinkage occurs, stabilizing the estimate at the expense of ad-
ding some bias. These relations express the general guideline of

modeling where for small sample sizes control of variability
dominates analytic goals. For large sample sizes bias reduction
dominates. Striking the appropriate tradeoffcomes from scien-
tific theories, formal models, and cross-validation methods (23).
When we do not know y and r2, they can be estimated from the

data (13), producing empirical Bayes estimates. Basic estimates
used are: ,

Y

i2 { (Yk Y)2 _2}+ ,

where + sets negative numbers to 0. Using these empirical Bayes
estimates, where information from all units is used to estimate
a single unit's mean, can improve estimation performance. Ap-
plications by Efron and Morris to toxoplasmosis incidence (24),
Laird and Louis to carcinogenicity testing (23), Rubin to law
school admissions criteria (26), Louis (27) and Thkey (28) to
histogram estimates, Clayton and Kaldor (29) to relative risks,
Stroud (30) to small area analysis, Hui and Berger to longitudinal
studies (31), DerSimonian and Laird to clinical trials (32), and
Wiley et al. (33) to AIDS transmission, a long history in actuarial
science and examples in this article indicate the rich variety ofap-
plications. The success ofthe approach is due to accounting for
variation in underlying parameters while shrinking extreme
results towards a group mean, essentially accounting for regres-
sion to the mean.
This improvement in estimates carries over to improved con-

fidence intervals in that they attain the nominal coverage but are
of shorter length than the classical intervals (13,34). This em-
pirical Bayes advantage holds even when the intervals are
broadened to account for uncertainty in estimating the prior
distribution. With the development ofcalibrated confidence in-
tervals, the empirical Bayes approach produces inferences ideal-
ly suited to risk assessment investigations when data from related
sources are available.

Consequences of Heterogeneity
Bias
We have seen ffiat accounting for heterogeneity can adjust stan-

dard errors, provide a valid basis for generalization, and improve
estimation of individual parameters. Ignoring the heterogenei-
ty can have dire consequences. Cox (15) considered the Gamma-
Poisson example. Ifwe wish to estimate the mean event rate from
several units, the mean Y is totally efficient, but we do need to
account for heterogeneity to get a proper standard error.
However, consider estimating a nonlinear function ofthe mean
1L; for example e". The estimate ey will not have expectation e"
even for large sample sizes; it is inconsistent. A consistent
estimate requires accounting for the heterogeneity.

Correlation
Discovery and accounts of heterogeneity are key ingredients

for the analysis of longitudinal data (35,36). At the most basic
level, consider the correlation between lung function
measurements (the forced expiratory volume) in adults at 3-year
intervals. With no covariates the correlation is about 0.90, but ad-
justing for age, height, and gender brings the correlation down
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to about 0.80. Some ofwhat used to be unexplained (co)variation
has been explained. It is important to note that this covariation
is measured using residuals from the model producing expecta-
tions, not from the raw data.
Unexplained (co)variation produces a variety ofphenomena

in longitudinal data. Consider relating adjacent residuals by plot-
ting e,,+ versus e,, where the e values are residuals from a
model. A plot with slope 1 represents tracking where an in-
dividual's deviation from the population prediction tends to stay
put. A slope less than 1 indicates regression to the mean, where
the subsequent deviation tends to be less extreme than the cur-
rent value. A slope greater than 1 indicates the horse race, where
residuals tend to increase in absolute value. The name derives
from the idea that horses in the lead tend to be running fastest and
increase their lead. Of course, a plot showing random scatter
with slope 0 indicates no association.
As one includes additional, effective covariates in the model,

these residual plots change, sometimes with changed slope,
usually with less extreme relations. Again, as the model explains
additional (co)variation, we change the structure. For example,
one explanation for the horse race comes from assuming that
covariates not yet in the model (e.g., smoldng), influence the rate
ofchange in lung function. Without the covariate in the model,
smokers have the fastest decline and the lowest lung function.
Their lead increases over time. Once the smoking covariate is in-
cluded, residuals compare smokers to smokers, and residuals
have a chance to be both positive and negative. Though there still
may be a horse race phenomenon, it will be less and could be
reduced further by including additional predictors of decline.
When to stop adding predictors depends on the available infor-
mation, subject area knowledge, and statistical art and science.

Errors in Variables
Unappreciated heterogeneity can influence scientific and

policy conclusions by disguising true parameter values and rela-
tional shapes. Berkson provided the classic example, where we
are relating variables through a linear model. For specificity,
consider the model: toxicity = a + b * dose, where we take
measurements on dose and toxicity. Consider a large sample, so
that statistical variation in parameter estimates is not the issue.
Ifdose is measured without error, then b relates true dose to tox-
icity but ifmeasured dose is a random deviation from true dose,
then b will be closer to zero (attenuated) relative to the slope ap
propriate for true dose. Yet, it is the appropriate value for relating
observed dose to toxicity.

Since all we ever deal with are observed values, why should we
care about this apparent bias? We care for at least two reasons:
(a) If different experiments are performed with different
measurement accuracies, then failure to account for these dif-
ferences will produce apparently different slopes. Any meta
analysis ofexperimental results will require adjustment to a com-
mon basis. (b) Pbssibly more importantly, even though the unad-
justed slope is appropriate for relating measured dose to
response, it is inappropriate when making policy recommenda-
tions. For example, many studies report on the positive relation
between blood pressure and heart attack risk. Since blood
pressure generally is measured with considerable variation, the
effectiveness ofblood pressure control is underestimated. Since
policies are aimed at reducing true blood pressure, the adjusted

slope is relevant.
Many authors have discussed the consequences of errors in

variables and methods for reducing the effects through design
and analyses (6,7,37-4(1). Design considerations include averag-
ing repeated measures to reduce heterogeneity. Analyses that ex-
plicitly or implicitly de-attenuate regression slopes are effective
in performing the necessary adjustments. In studies relating a
risk factor to a response in the presence ofa confounder, Kupper
(6) shows that unreliability in measurement of the confounder
can be more damaging than unreliability in the risk factor,
sometimes producing a sign change between the estimated slope
and the slope appropriate for true confounder-adjusted risk. Ex-
treme care is needed in defining research questions, designing,
and analyzing studies.
The effects of unaccommodated heterogeneity can be more

dramatic than slope attenuation. Consider the linear model

Y = a + bx + error

where x is the true regressor. Let the observed regressor (X) con-
ditional on the true regressor be distributed as a log-normal
variable with mean x. Then, the regression using the observed
regressor is:

y = a + bXP+ error,

where p < 1, so a linear relation is converted to nonlinear. Bailar
et al. (41) suggest that this type of phenomenon (operating as
variation in true slope from rodent to rodent) may produce the ap
parent lack of conservatism for linear extrapolation of dose-
response relations. The dose-response curve for vinyl chloride
is a classic example.
When we start with a nonlinear model, such as a logistic

regression or a multistage model for carcinogenicity,
heterogeneity due to noisy regressors or due to variations in true
slopes from unit to unit (the compound model) change the shape
of the relation. Techniques are available for estimating and ad-
justing (39,41) but more development of numerical methods is
required.

Survival Analysis
Survival analysis gives a particularly transparent view of the

influence ofheterogeneity (10,11,43-47). Recall that the hazard,
or force of mortality, is defined as:

At(t)dt = pr(death in (t,t+dt) I alive at t).
With S(t) the survival curve:

p4t) = -Flog (S(t))

S(t)= exp [- U(t)], U(t) =ft IL(t)dt
0
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Assume that each individual in a population has a hazard
depending on a parameter 0 that multiplies a baseline hazard
(proportional hazards), and that 0 varies from person to person
according to a probability distribution G (again, the two-stage
model). Then, for the population:

SG(t) = ef H(t) dG(O)
and

IzG(t) h(t) * EG(6IT>t),

where h is the basline hazard, and H is its integral. It can be
shown the EG (0 I T >t) is decreasing in t so that the shape
of it (t) is different from that of h(t).

Vaupel and Yashin (10) give several examples ofthis difference
in shape. The easiest example has h(t) 1 and G putting mass
on two points 01 <02. Then, though each individual has a cons-
tant hazard, the population hazard decreases from 02 to 01 as a
function of t. Intuitively, those alive at a large t are not represen-
tative ofthe original population, but overrepresent those with the
smaller 0 (01). Individuals with 02 tend to die off early. As in er-
rors in variables regression, u,G(t) is the appropriate population
curve, but it may be deceptive in terms of determining ap-
propriate policies or their effects. For example, it may be true that
it is good for every individual in a population to stop smoking (all
age-specific hazards decrease), but that after some follow-up in-
terval of time, some age-specific hazards are higher than they
would have been without the intervention. Some of the frail in-
dividuals who would have died earlier if they had continued to
smoke have been sent to deaths at later ages. This is another
manifestation of Simpson's paradox; aptly put as an intervention
that is good for men; good for women; but appears bad for peo-
ple. Vaupel and Yashin (1J) call this the apparent failure of suc-
cess and remind us carefully to consider heterogeneity when
designing and evaluating programs.

Risk Assessment
The decision on using historical controls in the analyses ofthe

carcinogen bioassay illuminates several issues related to
heterogeneity. Consider a bioassay comparing lifetime tumor
rates between an exposed and control group ofrodents, each with
50 rodents. Table 4 presents typical data when all tumors occur
in the exposed group. The Fisher's exact one-sidedp-value is ap-
proximately (0.5)x, so that if x is less than 5, thep-value will ex-
ceed the usual level for statistics significance. Thep-values for
X = 0,1,2,3,4,5 are 1.000, 0.500,0.247,0.121, 0.059, and 0.028.
However, in many situations pathologists will report that even an
X = 3 is biologically significant because in a long series of ex-
periments virtually no tumors ofthe type being considered have
been found in the control group.

This dissensus between the statistical procedure and scientific
opinion can be explained and rectified by a two-stage model
where the control rate for the current experiment is considered
to be sampled from a prior distribution. In the case we are con-
sidering, this prior puts almost all weight on a control rate of0
and is equivalent to increasing the control sample size. For

Ibke 4. Hypothetcal reslt from a carcinogen bioasay.
Control Exposed Total

Tumor 0 x x
Notumor 50 50-x 100-x

Total 50 50 100
'The one-sided Fisher's exactp-value is approximately (0.5)'.

example, consider the situation ifTable 4 were modified to have
450 control rodents, none with the tumor in question. Then, the
one-sided Fisher's exact test is approximately (0.1)x and three
tumors producep = 0.001, a statistically significant result.

In general, the use oftwo-stage models for this experiment is
more complicated. Dempster et al. (48) Tamura and Young (49),
and the references thereof explain approaches. Formalized use
ofthe historical data will help resolve controversies such as those
that surrounded the assay for DMT (dimethylterephthalate),
where the data showed 2%, 16%, and 27% lifetime incidence of
alveolar/broncheolar adenomas and carcinomas in male mice for
the control, low-, and high-dose groups (p<0.0001), but
previous control groups in the same laboratories had rates of
10%, 13%, and 18% (50). Refinements are needed to incorporate
time-until-tumor and cause-of-death information, and the ap-
proach should be included as a formal method offocusing discus-
sion ofbioassay results. As evidenced by Freedman (5S), the car-
cinogen bioassay generates uncertainty and controversy more
broadly.

Hierarchical models incorporating complicated variance com-
ponent structures have been used to relate data from seemingly
unrelated human studies and to formalize interspecies extrapola-
tions ofRisk. DuMouchel and Harris (52) present an analysis of
the health effects ofenvironmental emissions, and Laird (53) in-
vestigates the thyroid cancer risk of ionizing radiation. Both of
these analyses carefully lay out assumptions and study sensitivity
of results to changes in assumptions. The formal approach pro-
vides explicit documentation ofmethods and helps focus discus-
sion of modifications. These models will always be augmented
by expert opinion and political considerations when used as in-
put to risk assessment and control, but they serve an extremely
valuable role, going beyond more descriptiveapproaches such as
those ofCrouch and Wilson (54).

Scoping
When assessing or accommodating heterogeneity, the analysis

frame is extremely important. One needs to decide on the basic
unit of analysis (e.g., the individual, the publication, the small
geographic area), the baseline model (e.g., logistic dose
response, PRisson counts), the form ofheterogeneity (e.g., gam-
ma, Gaussian), and the type of units to be admitted to the
analysis. We refer to the types ofunits analyzed as scoping, and
it concerns defining the types ofunits that can be expected to be
related by the heterogeneity distribution. Too broad a scoping
will produce estimated prior variation so large as to unduly in-
flate the standard error ofparameter estimates and reduce the ad-
vantage in estimating unit-specific parameters of combining
evidence over units. Too narrow a scoping produces unstable
estimates of the prior and constrains generalizations of the
findings.
One approach to scoping includes units that are thought to have
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parameters sampled from acommon prior distribution. A more
general approach allows covariates to adjust the prior distribu-
tion. For example, in performing a small area analysis ofdisease
incidence (29), the prior can be adjusted for age, gender, and risk
factors by building a regression model for the prior mean. This
approach allows for broadened inferences and is the model-based
method for explaining unexplained variation.
Use of historical controls in the bioassay provides a good ex-

ample of the issues. The analyst needs to decide what controls to
include. Should they be from the same laboratory or several
laboratories? Should controls from tests performed several years
previously be included or only recent controls? Should control
rates from experiments read by the same pathologist be includ-
ed? Each choice influences the effect ofincluding historical con-
trols and the operating characteristic of the test procedure.
Amato and Lagakos (55) analyze the effects ofdisagreement

among pathologists when characterizing the tumors in rodents
used in a carcinogen bioassay. They show how dose-response
curves vary from pathologist to pathologist even when the same
slidesareread. Forbladderandlivertumors, dose-responsecurves
firomdifferentpathologistsessentiallydonotcross, implyingthat
someindividualshavea substantially higherrateofpositivesatall
doses. This variation in callrateproduces variation inthe statistical
powerofthebioassay andlimits its generalizability. Thevariation
invites explanation, with likely explanations including variation
inindividualpathologists' perceivedprevalenceoftumortypesand
variationinthedegreetowhichtheyincorporatetheconsequences
offalse positives and false negatives into theirdecision rule. Ifthe
causative factors can be isolated, pathology protocols can be
modified to reduce this inter-rate variation.

Summary
Wehave seenthat heterogeneity is the foundation of statistical

science and that its identification and accommodation is centrally
important to the design, conduct, analysis, and interpretation of
statistical studies. Key issues include determining baseline
models and defining analytic goals. Ifthe goals are primarily to
make inferences at the population level, then heterogeneity
modeling is quite robust and generally serves to expand the flex-
ibility of population models to represent expectations and
variances. If, however, inferences are directed at the unit-specific
level, considerable care is needed in specifying baseline models
and forms for heterogeneity. Commonly, true replications at the
unit level are unavailable, and models will be based on a com-
bination of scientific reasonableness and statistical/mathematical
convenience. Usually, the specific forms chosen are not uniquely
best for the observed data, and careful interpretation coupled
with sensitivity analysis is required.

Effective assessments, accommodations, and interpretations
ofheterogeneity require effective team work among statisticians
and other scientists tuning the approach to the application. The
scientifically challenging and societally important problems in
quantitative risk assessment provide fertile ground for develop-
ing and applying methods that will increase scientific understan-
ding and improve the public health.

This work was supported by grant DMS 8402720 from the National Science
Foundation and agrant from the Sloan Foundation. The authorthanks Margaret
Andrews for preparing the manuscript.
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